1. Kikuchi S, Shinpo K, Takeuchi M, et al. Glycation—a sweet tempter for neuronal death. Brain Res Brain Res Rev. 2003 Mar;41(2-3):306-23.
2. Hudson BI, Bucciarelli LG, Wendt T, et al. Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch Biochem Biophys. 2003 Nov 1;419(1):80-8.
3. Haffner SM. Insulin resistance, inflammation, and the prediabetic state, Am J Cardiol. 2003 Aug 18;92(4A):18J-26J.
4. Manduteanu I, Voinea M, Antohe F, et al. Effect of enoxaparin on high glucose-induced activation of endothelial cells. Eur J Pharmacol. 2003 Sep 23;477(3):269-276.
5. Nakanishi S, Yamane K, Kamei N, Okubo M, Kohno N. Elevated C-reactive protein is a risk factor for the development of type 2 diabetes in Japanese Americans. Diabetes Care. 2003 Oct;26(10):2754-7.
6. Jakus V. The role of nonenzymatic glycation and glyco-oxidation in the development of diabetic vascular complications. Cesk Fysiol. 2003 May;52(2):51-65.
7. Tauer A, Zhang X, Schaub TP, et al. Formation of advanced glycation end prod- ucts during CAPD. Am J Kidney Dis. 2003 Mar;41(3 Suppl 1):S57-60.
8. El-Assaad W, Buteau J, Peyot ML, et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology. 2003 Sep;144(9):4154-63.
9. Lin RY, Reis ED, Dore AT, et al. Lowering of dietary advanced glycation endproducts (AGE) reduces neointimal formation after arterial injury in genetically hypercholes- terolemic mice. Atherosclerosis. 2002 Aug;163(2):303-11.
10. Chia-Lin Li, Shih-Tzer Tsai, Pesus Chou. Comparison of metabolic risk profiles between subjects with fasting and 2-hour plas- ma glucose impairment. The Kinmen Study. Journal of Clinical Epidemiology 55 (1) (2002) pp. 19-24.
11. Kalousova M, Skrha J, Zima T. Advanced glycation end-products and advanced oxida- tion protein products in patients with diabetes mellitus. Physiol Res. 2002;51(6):597-604.
12. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002 Sep;5(5):561-8.
13. Gregg EW, Engelgau M, Narayan, V. Complications of diabetes in elderly people. BMJ October 26, 2002, Volume 325, Number 7370, pp. 916-917.
14. Maedler K, Spinas GA, Lehmann R, et al. Glucose induces beta-cell apoptosis via upreg- ulation of the Fas receptor in human islets. Diabetes 2001 Aug; 50(8): 1683-90.
15. Ha H, Lee HB. Oxidative stress in diabetic nephropathy: basic and clinical information. Curr Diab Rep. 2001 Dec;1(3):282-7.
16. Vlassara H. The AGE-receptor in the patho- genesis of diabetic complications. Diabetes Metab Res Rev. 2001 Nov-Dec;17(6):436-43. 17. Kimura C, Oike M, Koyama T, Ito Y. Impairment of endothelial nitric oxide pro- duction by acute glucose overload. Am J Physiol Endocrinol Metab. 2001 Jan;280(1):E171-8.
18. Agardh E, Hultberg B, Agardh C. Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats. Curr Eye Res. 2000 Jul;21(1):543-9.
19. Siskova A, Wilhelm J. Role of nonenzymatic glycation and oxidative stress on the develop- ment of complicated diabetic cataracts. Cesk Fysiol. 2000 Feb;49(1):16-21.
20. Aso Y, Inukai T, Tayama K, Takemura Y. Serum concentrations of advanced glycation endproducts are associated with the develop- ment of atherosclerosis as well as diabetic microangiopathy in patients with type 2 dia- betes. Acta Diabetol. 2000;37(2):87-92.
21. Teixeira AS, Andrade SP. Glucose-induced inhibition of angiogenesis in the rat sponge granuloma is prevented by aminoguanidine. Life Sci. 1999;64(8):655-62.
22. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular compli- cations. Diabetes Care. 1998 Feb;21(2):326-7.
23. Levi B, Werman MJ. Long-term fructose con- sumption accelerates glycation and several age-related variables in male rats. J Nutr. 1998 Sep;128(9):1442-9.
24. Ono Y, Aoki S, Ohnishi K, Yasuda T, Kawano K, Tsukada Y. Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res Clin Pract. 1998 Aug;41(2):131-7.
25. Ren J, Gintant GA, Miller RE, Davidoff AJ. High extracellular glucose impairs cardiac
E-C coupling in a glycosylation-dependent manner. Am J Physiol. 1997 Dec;273(6 Pt 2):H2876-83.
26. Larkins RG, Dunlop ME, Johnson EI. The pathogenesis of diabetic retinopathy. Aust N Z J Ophthalmol. 1996 May;24(2):97-104.
27. Vlassara H. Advanced glycation end-products and atherosclerosis. Ann Med. 1996 Oct;28(5):419-26. 28. Howard EW, Benton R, Ahern-Moore J, Tomasek JJ. Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Exp Cell Res. 1996 Oct 10;228(1):132-7.
29. Sugiyama S, Miyata T, Horie K, et al. Advanced glycation end-products in diabetic nephropathy. Nephrol Dial Transplant. 1996;11 Suppl 5:91-4. 30. Emekli, N. Nonenzymatic glycosylation of tis- sue and blood proteins. J. Marmara Univ. Dent. Fac. 1996 Sep; 2(2-3): 530-4.
31. Yarat A, Uguz Z, Ustunel A, Emekli N. Lens glutathione, lens protein glycation and elec- trophoretic patterns of lens proteins in STZ induced diabetic rats. Glycoconj J. 1995 Oct;12(5):622-6.
32. Morohoshi M, Fujisawa K, Uchimura I, Numano F. The effect of glucose and advanced glycosylation end products on IL-6 production by human monocytes. Ann N Y Acad Sci. 1995 Jan 17;748:562-70.
33. Ziyadeh FN. Mediators of hyperglycemia and the pathogenesis of matrix accumulation in diabetic renal disease. Miner Electrolyte Metab. 1995;21(4-5):292-302.
34. Kaneto H, Fujii J, Suzuki K, et al. DNA cleav- age induced by glycation of Cu,Zn-superoxide dismutase. Biochem J. 1994 Nov 15;304 (Pt 1):219-25. 35. Makino H, Shikata K, Kushiro M, et al. Roles of advanced glycation end-products in the
progression of diabetic Nephropathy. Nephrol Dial Transplant. 1996;11 Suppl 5:76-80.
36. Winocour PD. Decreased platelet membrane fluidity due to glycation or acetylation of membrane proteins. Thromb Haemost. 1992 Nov 10;68(5):577-82.
37. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycation and the pathogenesis of diabetic complications. Ann. Intern. Med. 1984; 101: 527-37.
38. Walford RL, Harris SB, Gunion MW. The calorically restricted low-fat nutrient-dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11533-7.
39. Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003 Jan 24; 299(5606): 572-4.
40. Lane MA, Ingram DK, Roth GS. Calorie restriction in nonhuman primates: effects on diabetes and cardiovascular risk. Toxicol. Sci. 1999 Dec; 52(2 Suppl.): 41-8.
41. Kemnitz JW, Roecker EB, Weindruch R, Elson DF, Baum ST, Bergman RN. Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am. J.Physiol. 1994 Apr; 266(4, Pt. 1): E540-7.
42. Kent, S. BioMarker pharmaceuticals develops anti-aging therapy. Life Extension magazine 2003 Jun; 9(6): 56–67. Ft. Lauderdale, FL: Life Extension Foundation (http://www.lef.org/magazine/mag2003/2003_ preprint_bio_01.html?GO.X=9\&GO.Y=7).
43. Suh Y, Lee KA, Kim WH, Han BG, Vijg J, Park SC. Aging alters the apoptotic response to genotoxic stress. Nat. Med. 2002 Jan; 8(1):3-4.
44. Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN. Dietary restriction reduces angiogenesis and growth in an ortho- topic mouse brain tumour model. Br. J. Cancer 2002 May 20; 86(10): 1615-21.
45. Kritchevsky D. Caloric restriction and cancer. J. Nutr. Sci. Vitaminol. 2001 Feb; 47(1): 13-9.
46. Moreschi C. The connection between nutri- tion and tumor promotion. Z. Immunitaetsforsch. 1909; 2: 651.
47. Spindler SR. Reversing aging rapidly with short-term calorie restriction. Life Extension magazine 2001a; 7(12): 40–61. Ft. Lauderdale, FL: Life Extension Foundation (www.lef.org/magazine/mag2001/dec2001_ cover_spindler_04.html).
48. Yoshida K, Inoue T, Hirabayashi Y, Nojima K, Sado T. Calorie restriction and sponta- neous hepatic tumors in C3H/He mice. J. Nutr. Health Aging 1999; 3(2): 121-6.
49. Wickner S, Mauriz M, Gottesmann S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999 Dec 3; 286(5446): 1888-93.
50. Kritchevsky D. The effect of over- and under- nutrition on cancer. Eur. J. Cancer Prev. 1995 Dec; 4(6): 445-51.
51. Bjornholt JV, Erikssen G, Aaser E, et al. Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men. Diabetes Care 1999;22:45-49.
52. HARRISON’S PRINCIPLES OF INTER- NAL MEDICINE, ThirteenthEdition, McGraw-Hill, 1994.p. 2001 “In one study in normal persons (arte- rialized venous samples), insulin secretion ceased at a 4.6 nmol/L glucose (83mg/dl)...”
53. IBID., p.2004 “Plasma insulin concentration generally reaches background levels for the assay when plasma glucose falls below 4.6 nmol/L (83mg./dl). . .”
54. IBID. Table 328-4 Mean plasma glucose and insulin during fasting. [Zero values obtained after overnight fast. Results are mean values for 20 normal men and 60 normal women]
55. Heller RF. Hyperinsulinemic obesity and car- bohydrate addiction: the missing link is the carbohydrate frequency factor. Med Hypotheses 1994 May;42(5):307-12.
56. Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003 Sep;52(9):2191-7.
57. Bahceci M, Tuzcu A, Bahceci S, Tuzcu S. Is hyperprolactinemia associated with insulin resistance in non-obese patients with polycys- tic ovary syndrome? J Endocrinol Invest. 2003 Jul;26(7):655-9.
58. Fujiwara S, Emoto M, Komatsu M, et al. Arterial wall thickness is associated with insulin resistance in type 2 diabetic patients. J Atheroscler Thromb. 2003;10(4):246-52.
59. Taniguchi A, Fukushima M, Seino Y, et al. Platelet count is independently associated with insulin resistance in non-obese Japanese type 2 diabetic patients. Metabolism. 2003 Oct;52(10):1246-9.
60. Welin L, Bresater LE, Eriksson H, Hansson PO, Welin C, Rosengren A. Insulin resistance and other risk factors for coronary heart dis- ease in elderly men. The Study of Men Born in 1913 and 1923. J Cardiovasc Risk. 2003 Aug;10(4):283-8.
61. Hitsumoto T, Iizuka T, Takahashi M, et al. Relationship between insulin resistance and oxidative stress in vivo. J Cardiol. 2003 Sep;42(3):119-27.
62. Festa A, Hanley AJ, Tracy RP, D’Agostino R Jr, Haffner SM. Inflammation in the predia- betic state is related to increased insulin resist ance rather than decreased insulin secretion. Circulation. 2003 Oct 14;108(15):1822-30. Epub 2003 Sep 29.
63. Wiernsperger NF, Bouskela E. Microcirculation in insulin resistance and dia- betes: more than just a complication. Diabetes Metab. 2003 Sep;29(4 Pt 2):6S77-87.
64. Brand-Miller JC. Glycemic load and chronic disease. Nutr Rev. 2003 May;61(5 Pt 2):S49-55. 65. Wolever TM, Mehling C. Long-term effect of varying the source or amount of dietary carbohydrate on postprandial plasma glucose, insulin, triacylglycerol, and free fatty acid con- centrations in subjects with impaired glucose tolerance. Am J Clin Nutr. 2003 Mar;77(3):612-21.66. Li J, Kaneko T, Qin LQ, Wang J, Wang Y, Sato A. Long-term effects of high dietary fiber intake on glucose tolerance and lipid metabolism in GK rats: comparison among barley, rice, and cornstarch. Metabolism. 2003 Sep;52(9):1206-10.
67. Li J, Kaneko T, Wang Y, Qin LQ, Sato A. Effects of dietary fiber on the glucose toler- ance in spontaneously diabetic rats—compari- son among barley, rice, and corn starch. Nippon Eiseigaku Zasshi. 2003 May;58(2):281-6.
68. Liu S, Willett WC. Dietary glycemic load and atherothrombotic risk. Curr Atheroscler Rep. 2002;4(6):454-61.
69. Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr. 2002 Jul;76(1):274S-80S. 70. Preuss HG, Jarrell ST, Scheckenbach R, Lieberman S, Anderson RA. Comparative effects of chromium, vanadium and gymnema sylvestre on sugar-induced blood pressure ele- vations in SHR. J Am Coll Nutr. 1998 Apr;17(2):116-23.
71. Anderson RA, Cheng N, Bryden NA, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in indi- viduals with type 2 diabetes. Diabetes. 1997 Nov;46(11):1786-91. 72. Baker B. Chromium supplements tied to glu- cose control. Family Practice News, 7/15/1996, pg 5.
73. Mirsky N. Glucose tolerance factor reduces blood glucose and free fatty acids levels in diabetic rats. J Inorg Biochem. 1993 Feb 1;49(2):123-8.
74. J.A. Vinson, K-H. Hsiao. Comparative Effect Of Various Forms Of Chromium On Serum Glucose: An Assay For Biologically Active Chromium. Nutritional Reports International, 32, (1), 1985.
75. Evans GW, Meyer L. Chromium picolinate increases longevity, Age (Chester) 15(4):p 135 1992. Twenty-second Annual Meeting of the American Aging Association and the Seventh Annual Meeting of the American College of Clinical Gerontology - San Francisco, California, USA October 16-20, 1992; 19921016.
76. Rosolova H, Mayer O Jr, Reaven G. Effect of variations in plasma magnesium concentra- tions on resistance to insulin-mediated glu- cose disposal in non-diabetic subjects. J. Clin. Endocrinol. Metab. 1997; 82: 3783-5.
77. Tosiello L. Hypomagnesemia and diabetes mellitus. A review of clinical implications. Arch Intern Med 1996 Jun 10;156(11):1143-8.78. Paolisso G, Sgambato S, Gambardella A, et al. Daily magnesium supplements improve
glucose handling in elderly subjects. Am. J. Clin.Nutr. 1992 Jun; 55(6): 1161-7.
79. Paolisso G, Scheen A, D’Onofrio F, Lefebvre P. Magnesium and glucose homeostasis. Diabetologia 1990;33:511-4.
80. Paolisso G, Passariello N, Pizza G, et al. Dietary magnesium supplements improve B- cell response to glucose and arginine in elder- ly non-insulin dependent diabetic subjects. Acta Endocrinol. Copenh. 1989 Jul; 121(1): 16-20.
81. Borenshtein D, Ofri R, Werman M, et al. Cataract development in diabetic sand rats treated with alpha-lipoic acid and its gamma- linolenic acid conjugate. Diabetes Metab Res Rev. 2001 Jan-Feb;17(1):44-50.
82. Midaoui AE, Elimadi A, Wu L, Haddad PS, de Champlain J. Lipoic acid prevents hyper- tension, hyperglycemia, and the increase in heart mitochondrial superoxide production. Am J Hypertens. 2003 Mar;16(3):173-9.
83. Ametov AS, Barinov A, Dyck PJ, et al. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic
acid: the SYDNEY trial. Diabetes Care. 2003 Mar;26(3):770-6.
84. Dicter N, Madar Z, Tirosh O. Alpha-lipoic acid inhibits glycogen synthesis in rat soleus muscle via its oxidative activity and the uncou- pling of mitochondria. J Nutr. 2002 Oct;132(10):3001-6.
85. Yilmaz O, Ozkan Y, Yildirim M, Ozturk AI, Ersan Y. Effects of alpha lipoic acid, ascorbic acid-6-palmitate, and fish oil on the glu- tathione, malonaldehyde, and fatty acids lev- els in erythrocytes of streptozotocin induced diabetic male rats. J Cell Biochem. 2002;86(3):530-9.
86. Evans JL, Heymann CJ, Goldfine ID, Gavin LA. Pharmacokinetics, tolerability, and fruc- tosamine-lowering effect of a novel, con- trolled-release formulation of alpha-lipoic acid, Endocr Pract. 2002 Jan-Feb;8(1):29-35.
87. Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of dia- betes complications. Nutrition. 2001 Oct;17(10):888-95.
88. Evans JL, Goldfine ID. Alpha-lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 dia- betes. Diabetes Technol Ther. 2000 Autumn;2(3):401-13.
89. Melhem MF, Craven PA, Derubertis FR. Effects of dietary supplementation of alpha- lipoic acid on early glomerular injury in dia- betes mellitus. J Am Soc Nephrol. 2001 Jan; 12(1): 124-33.
90. Jain SK, Lim G. Lipoic acid decreases lipid peroxidation and protein glycosylation and increases (Na+ + K+)- and Ca++-ATPase activities in high glucose-treated red blood cells (RBC). Free Radical Biol. Med. 1998; 25: S94 (Abstr. 268); see also Free Radical Biol. Med. 2000; 29(11): 1122-8.
91. Khamaisi M, Rudich A, Potashnik R, Tritschler HJ, Gutman A, Bashan N. Lipoic acid acutely induces hypoglycemia in fasting nondiabetics and diabetic rats. Metabolism 1999 Apr; 48(4): 504-10.
92. Jacob S, Henriksen EJ, Ruus P, et al. The radical scavenger a-lipoic acid enhances insulin sensitivity in patients with NIDDM; a placebo controlled trial. Presented at Oxidants and Antioxidants in Biology, Santa Barbara, California, February 27-March 1, 1997.
93. Jacob S, Streeper RS, Fogt DL, et al. The antioxidant a-lipoic acid enhances insulin- stimulated glucose metabolism in insulin- resistant rat skeletal muscle. Diabetes 1996 Aug; 45:1024-9.
94. Jacob S, Henriksen EJ, Schiemann AL, et al. Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoic acid. Arzneimittelforschung 1995 Aug; 45(8): 872-4.
95. Derosa G, Cicero AF, Gaddi A, Mugellini A, Ciccarelli L, Fogari R. The effect of L-carni- tine on plasma lipoprotein(a) levels in hyper-
cholesterolemic patients with type 2 diabetes mellitus. Clin Ther. 2003 May;25(5):1429-39. 96. Mingrone G, Greco AV, Capristo E, et al. L- carnitine improves glucose disposal in type 2 diabetic patients. J Am Coll Nutr. 1999; 18(1): 77-82.
97. Pessotto P, Liberati R, Petrella O, Romanelli L, Calvani M, Peluso G. In experimental dia- betes the decrease in the eye of lens carnitine levels is an early important and selective event. Exp. Eye Res. Feb 1997; 64: 195-201.
98. Yoshikawa H, Tajiri Y, Sako Y, Hashimoto T, Umeda F, Nawata H. Effects of biotin on glu- cotoxicity or lipotoxicity in rat pancreatic islets. Metabolism. 2002 Feb;51(2):163-8.99. Furukawa Y. Enhancement of glucose- induced insulin secretion and modification of glucose metabolism by biotin. Nippon Rinsho. 1999 Oct;57(10):2261-9.100. Romero-Navarro G, Cabrera-Valladares G, German MS, et al. Biotin regulation of pan- creatic glucokinase and insulin in primary cul- tured rat islets and in biotin-deficient rats. Endocrinology. 1999 Oct;140(10):4595-600.
101. McCarty MF. High-dose biotin, an inducer of glucokinase expression, may synergize with chromium picolinate to enable a definitive nutritional therapy for type II diabetes. Med Hypotheses. 1999 May;52(5):401-6.102.Tsunoda K, Osada K, Komai M, et al. Effects of dietary biotin on enhanced sucrose intake and enhanced gustatory nerve responses to sucrose seen in diabetic OLETF rat. J Nutr Sci Vitaminol (Tokyo). 1998 Apr;44(2):207-16.103. Zhang H, Osada K, Maebashi M, Ito M, Komai M, Furukawa Y. A high biotin diet improves the impaired glucose tolerance of long-term spontaneously hyperglycemic rats with non-insulin-dependent diabetes mellitus. J Nutr Sci Vitaminol (Tokyo). 1996 Dec;42(6):517-26.104. Borboni P, Magnaterra R, Rabini RA, et al. Effect of biotin on glucokinase activity, mRNA expression and insulin release in cul- tured beta-cells. Acta Diabetol. 1996 Jul;33(2):154-8.105. Koutsikos D, Fourtounas C, Kapetanaki A, et al. Oral glucose tolerance test after high-dose i.v. biotin administration in normoglucemic hemodialysis patients. Ren Fail. 1996 Jan;18(1):131-7.106. Koutsikos D, Agroyannis B, Tzanatos- Exarchou H. Biotin for diabetic peripheral neuropathy. Biomed. Pharmacother. 1990; 44: 511-4.
107. Reddi A, DeAngelis B, Frank O, Lasker N, Baker H. Biotin supplementation improves glucose and insulin tolerances in genetically diabetic KK mice. Life Sci. 1988;42(13):1323- 30.108. Zhang H, Osada K, Sone H, Furukawa Y. Biotin administration improves the impaired glucose tolerance to streptozotocin-induced diabetic Wistar rats. J Nutr Sci Vitaminol. 1997; 43: 271-80.
109. Jones P, Yate P. Contraindications to the use of metformin, BMJ 2003;326:4-5 (4 January).
110. Wulffele MG, Kooy A, Lehert P, et al. Combination of Insulin and Metformin in the Treatment of Type 2 Diabetes. Diabetes Care 25:2133-2140, 2002.
111. Diabetes Prevention Research Group, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Eng. J Med, 2002, bol 346, pp. 393-403.
112. Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics (online) 2001;107:e55.
113. Klow NE, Draganov B, Os I. Metformin and contrast media-increased risk of lactic acido sis. Tidsskr. Nor. Laegeforen. 2001 Jun 10; 121(15):1829 (in Norwegian).
114. Charles MA, Eschwege E. Prevention of type 2 diabetes: role of metformin. Drugs 1999; 58(Suppl. 1): 71-3; discussion, 75-82.
115. Brown JB, Pedula K, Barzilay J, Herson MK, Latare P. Lactic acidosis rates in type 2 dia- betes, Diabetes Care. 1998 Oct;21(10):1659-63.
116. Abbasi F, Kamath V, Rizvi AA, Carantoni M, Chen YD, Reaven GM. Results of a placebo- controlled study of the metabolic effects of the addition of metformin to sulfonylurea- treated patients. Evidence for a central role of adipose tissue. Diabetes Care. 1997 Dec;20(12):1863-9.
117. Scheen AJ. Clinical pharmacokinetics of met formin. Clin Pharmacokinet. 1996 May;30(5):359-71.
118. D Giugliano, N De Rosa, G Di Maro, et al. Metformin improves glucose, lipid metabo- lism, and reduces blood pressure in hyperten- sive, obese women. Diabetes Care 1993, Vol 16, Issue 10 1387-90.
119. Hollenbeck CB, Johnston P, Varasteh BB, Chen YD, Reaven GM. Effects of metformin on glucose, insulin and lipid metabolism in patients with mild hypertriglyceridaemia and non-insulin dependent diabetes by glucose tolerance test criteria. Diabete Metab. 1991 Sep-Oct;17(5):483-9. 120. Jakus V. The role of nonenzymatic glycation and glyco-oxidation in the development of diabetic vascular complications. Cesk Fysiol. 2003 May;52(2):51-65. 121. Hipkiss AR, Brownson C. A possible new role for the anti-ageing peptide carnosine. Cell. Mol. Life Sci. 2000; 57(5): 747-53.
122. Palanduz S, Ademoglu E, Gokkusu C, Tamer S. Plasma antioxidants and type 2 diabetes mellitus. Res Commun Mol Pathol Pharmacol. 2001;109(5-6):309-18.
123. Kaneto H, Kajimoto Y, Miyagawa J, et al. Beneficial effects of antioxidants in dia- betes: possible protection of pancreatic beta- cells against glucose toxicity. Diabetes 1999 Dec; 48(12): 2398-2406.
124. Ruhe RC, McDonald RB. Use of antioxidant nutrients in the prevention and treatment of type 2 diabetes. J Am Coll Nutr. 2001 Oct;20(5 Suppl):363S-369S; discussion 381S-383S.
125. Rauscher FM, Sanders RA, Watkins JB 3rd. Effects of coenzyme Q10 treatment on antiox- idant pathways in normal and streptozotocin- induced diabetic rats. J. Biochem. Mol. Toxicol. 2001; 15(1): 41-6.
126. McCarty MF. Can correction of sub-optimal coenzyme Q status improve beta-cell function in type II diabetics. Med. Hypotheses 1999 May; 52(5): 397-400.
127. Brignardello E, Gallo M, Aragno M, et al. Dehydroepiandrosterone prevents lipid peroxidation and cell growth inhibition induced by high glucose concentration in cul- tured rat mesangial cells. J. Endocrinol. 2000 Aug; 166(2): 401-6.
128. Yamaguchi Y, Tanaka S, Yamakawa T, et al. Reduced serum dehydroepiandrosterone lev- els in diabetic patients with hyperinsulinemia. Clin. Endocrinol. 1998 Sep; 49(3): 377-83.
129. Houseknecht KL, Vanden Heuvel JP, Moya- Camarena SY, et al. Dietary conjugated linoleic acid normalizes impaired glucose tol- erance in the Zucker diabetic fatty fa/fa rat. Biochem. Biophys. Res. Commun. 1998 Mar 27; 244(3): 678-82.http://generous.net/health/ purdue/shtml or contact Purdue News Service at (765) 494-2096).
130. Wenzel S, Stolte H, Soose M. Effects of sily- binin and antioxidants on high glucose- induced alterations of fibronectin turnover in human mesangial cell cultures. J. Pharmacol. Exp. Ther. 1996; 279: 1520-6.
131. Du Y, Smith MA, Miller CM, Kern TS. Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. J Neurochem. 2002 Mar; 80(5): 771-9.
132. Friedman EA, Distant DA, Fleishhacker JF, Boyd TA, Cartwright K. Aminoguanidine pro- longs survival in azotemic-induced diabetic rats. Am J Kidney Dis. 1997; 30(2): 253-9.
133. Paolisso G, Di Maro G, Galzerano D. Pharmacological doses of vitamin E improve insulin action in healthy subjects and non- insulin dependent diabetic patients. Am J Clin Nutr. 1993; 57: 650-6.
134. Pariza M. First human studies promising for popular nutritional supplement: CLA could help control weight, fat, diabetes, and muscle loss. Presented at the American Chemical Society Meeting, Washington, D.C., August 20, 2000 (www.acs.org/portal/Chemistry- PID=acsdisplay.html&DOC=daily\ sunday\weight.html).
135. Sargeant LA, Wareham NJ, Bingham S, et al. Vitamin C and hyperglycemia in the European Prospective Investigation in Cancer-Norfolk (EPIC-Norfolk) study; a pop- ulation-based study. Diabetes Care 2000 Jun; 23(6): 726-32.
136. Schwille PO, Schmiedl A, Herrmann U, Wipplinger J. Postprandial hyperinsulinaemia, insulin resistance and inappropriately high phosphaturia are features of younger males with idiopathic calcium urolithiasis: attenua- tion by ascorbic acid supplementation of a test meal. Urol. Res. 1997; 25: 49-58.
137. Obrenovich ME, Monnier VM. Vitamin B1 blocks damage caused by hyperglycemia. Sci SAGE KE. 2003 Mar 12;2003(10):PE6. 138. Anetor JI, Senjobi A, Ajose OA, Agbedana EO. Decreased serum magnesium and zinc levels: atherogenic implications in type-2 dia- betes mellitus in Nigerians. Nutr Health. 2002;16(4):291-300.
139. Ho E, Quan N, Tsai YH, Lai W, Bray TM. Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med (Maywood) 2001 Feb;226(2):103-11.
140. Raz I, Karsai D, Katz M. The influence of zinc supplementation on glucose homeostasis in NIDDM. Diabetes Res. 1989; 11: 73-9.
141. Gupta R, Garg VK, Mathur DK, Goyal RK. Oral zinc therapy in diabetic neuropathy. J Assoc Physicians India. 1998 Nov;46(11):939-42.
142. Lukasiak J, Cajzer D, Dabrowska E, et al. Low zinc levels in metabolic X syndrome (mzX) patients measured by hair zinc compo- sition analysis. Rocz Panstw Zakl Hig. 1998;49(2):241-4.
143.Wang P, Yang Z. Influence of insufficient zinc on immune functions in NIDDM patients. Hunan Yi Ke Da Xue Xue Bao. 1998;23(6):599- 601.
144. Cunningham JJ, Fu A, Mearkle PL, Brown RG. Hyperzincuria in individuals with insulin- dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supple mentation. Metabolism 1994 Dec;43(12):1558-62.145. Faure P, Roussel A, Coudray C, et al. Zinc and insulin sensitivity. Biol Trace Elem Res 1992 Jan-Mar;32:305-10.146. Sakurai H. A new concept: the use of vanadi- um complexes in the treatment of diabetes mellitus. Chem Rec. 2002;2(4):237-48.
147. Beliaeva NF, Gorodetskii VK, Tochilkin AI, Golubev MA, Semenova NV, Kovel’man IR. Vanadium compounds—a new class of thera- peutic agents for the treatment of diabetes mellitus. Vopr Med Khim. 2000 Jul- Aug;46(4):344-60.
148. Sun Q, Sekar N, Goldwaser I, Gershonov E, Fridkin M, Shechter Y. Vanadate restores glu- cose 6-phosphate in diabetic rats: a mecha- nism to enhance glucose metabolism. Am J Physiol Endocrinol Metab. 2000 Aug;279(2):E403-10.
149. Thompson KH. Vanadium and diabetes. Biofactors. 1999;10(1):43-51.
150. Badmaev V, Prakash S, Majeed M. Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med. 1999 Jun;5(3):273-91.
151. Guyer B, Freedman MA, Strobino DM, Sondik EJ. Annual summary of vital statistics: trends in the health of Americans during the 20th century. Pediatrics. 2000 Dec;106(6):1307-17.